

The Certified Energy Manager (CEM®) Program for Professional Certification (ON-LINE FAST TRACK <u>LOW COST</u> VERSION)

Date:15, 16, 17, 20, 21 and 22 May, 2013Time:8:00 pm to 10:00 pm (Hong Kong Time)Exam:1 June 2013, 9:00 am to 1:00 pmVenue:To be Advised

Course Code:CEM / 11 / HK (OL)Registration Deadline:14 April 2013

The As	sociation of Ener	gy Engineer
· Yr	certifies that	it 's'
	Leonard K. Cho	ow
		T
ha	s completed the prescribed standards	for certification ,
	monstrated a high level of competer	
	nergy management, and is hereby	
fore	nergy management, and is nerevy	
	31-	~
	TIFIED ENERGY	MANAGER
	TIFIED ENERGY I	MANAGER
	TIFIED ENERGY	MANAGER
	TIFIED ENERGY I Experience Date: December 31, 2012 CEM	MANAGER

THE MARK OF AN ENERGY PROFESSIONAL

Since it's inception in 1981, the Certified Energy Manager (CEM®) credential has become widely accepted and used as a measure of professional accomplishment within the energy management field. It has gained industry-wide use as the standard for qualifying energy professionals both in the United States and worldwide. It is recognized by the U.S. Department of Energy, the Office of Federal Energy Management Programs (FEMP), and the U.S. Agency for International Development, as well as by numerous state energy offices, major utilities, corporations and energy service companies. By attaining the status of CEM, you will be joining an elite group of over 10,000 professionals serving industry, business and government throughout the U.S. and in 77 countries. In particular, the contexts of the latest mandatory Energy Audit Guidelines in Hong Kong will be included in the course.

COMPREHENSIVE 6 EVENING ON-LINE TRAINING PROGRAM FOR ENERGY MANAGERS (prep: CEM Certification)

This is the CEM on-line course (same as the course held in USA). Metric units will be taught in Hong Kong instead of Imperial units in USA. CEM certificates will be issued directly from Association of Energy Engineers (USA Headquarters) after passing the exam with eligibility conditions of experience and qualifications. To obtain further information on the CEM program, please visit the web site <u>www.aeecenter.org/certification/cem</u>.

Cours	se Fee:		
A1:	Ordinary Applicant:	US \$1,075.00	(HK \$ 8,400)
A2:	Early Bird [#] :	US \$1,020.00	(HK \$ 8,000)
A3:	Pairing *:	US \$1,020.00	(HK \$ 8,000)
A4:	Early Bird + Pairing*:	US\$ 970.00	(HK \$ 7,600)
Exam	<u>I Fee:</u>		
B1:	Exam – Taking this course	US \$ 330.00	(HK \$ 2,600)
B2:	Re-sit exam - Course taken previously:	US \$ 415.00	(HK \$ 3,250)

Note: # Early Bird: Registered before 23 March 2013 * Pairing: 2 candidates or more to submit at the same time.

Supporting Organizations:

Hona

hante

BUSINESS ENVIRONMENT COUNCIL 商界環保協會

ABOUT THE COURSE

This special in-depth course is ideal for professionals who seek a more detailed program of instruction covering the technical, economic and regulatory aspects of effective energy management. The program provides detailed coverage of all of the 26 training sections specified for energy managers in the field, and offers a comprehensive learning and problem-solving forum for those who want a broader understanding of the latest energy cost reduction techniques and strategies. The course will be presented online in a series of teleconferencing modules. The candidates only need to put them on internet at home. No venue will be provided.

INSTRUCTORS

CLINT D. CHRISTENSON, C.E.M., is currently a consultant and instructor providing optimization services for industrial, commercial and institutional customers. He previously served as Senior Buildings Engineer for Pacific Northwest National Laboratories, Senior Energy Engineer with NORESCO, Inc., and the Director of Advanced Solutions for Johnson Controls, Inc. Clint served as the Director of Oklahoma State University's Industrial Assessment Center while pursuing a Ph.D. His broad experience in energy management has included the conducting of over 150 industrial, commercial, and institutional energy surveys over 20 years. He has published widely in the energy field, and made numerous presentations at national and international conferences.

TECHNICAL REQUIREMENTS

Each person will need a computer with internet access. In addition, each individual will need to connect via Skype or via VoIP. Candidates who join the course via VoIP will need speakers or headphones to hear the GoToWebinar session and a microphone if they want to speak. Complete details will be given to all candidates well before the course.

COURSE OUTLINE

THE NEED FOR ENERGY MANAGEMENT	ENERGY CODES AND STANDARDS	INDOOR AIR QUALITY
 Building energy cost control Utility DSM programs and deregulation: energy efficiency and peak demand reduction Commercial business energy cost control Industrial plant operation improvement Reducing energy costs Reducing environmental emissions Improving product quality Improving plant productivity 	 Building codes ASHRAE standards (62, 15, 3, 90.1) ASME, IEEE, and other standards Federal legislation: NECPA, PURPA, NGPA, CAAA, NEPA of 1992 CFC replacements: Montreal Protocol, global climate change National Energy Policy Act of 1992 	 Standards of care: ASHRAE Standard 62 Reasons for managing indoor air quality Acceptable air quality Ventilation rate procedure, Air quality procedure Typical air contaminants; VOCs and bioaerosols IAQ problems; CO2 measurement and control AEE Certified IAQ Professional requirements

The Association of Energy Engineers Hong Kong Chapter

	Hong Kong Association of Energy Engineers	
CONDUCTING AN ENERGY AUDIT	ELECTRIC RATE STRUCTURES	BOILERS AND STEAM GENERATION
 Purpose of the energy audit Facility description and data needs Major systems in the facility Data forms for recording information Collecting the actual data Identification of preliminary energy management opportunities Energy audit reports 	 Short history of electric rates The difference between power and energy Electric meters Components of electric rates Example rate structures Factors in controlling electric costs Electric utility incentive programs Special schedules (interruptible, TOU, real-time pricing) 	 Basics of combustion systems: excess air control Boiler efficiency improvement: blowdown management, condensate return, turbulators Combustion controls Waste heat recovery Steam traps: purpose and testing Process insulation Example of boiler improvement
ENERGY AUDIT INSTRUMENTATION	MOTORS AND ADJUSTABLE SPEED DRIVES	GREEN BUILDINGS
 The need for instrumentation Light level meters Electric meters: voltages, current, power, energy, power factor Temperature-measuring instruments Combustion efficiency measurement Air flow and air leak measurement Thermography Ultrasonic leak detectors Data logging 	 How motors work High-efficiency motors Examples of cost-effective motor changes Use of adjustable speed drives Example of cost-effective ASD use Improved motor belts and drives Compressed air management Adjustable speed drive alternatives: eddy current clutches, variable frequency drives, inlet and outlet vane control, etc. 	 Introduction to sustainability The USGBC and the LEED rating systems for new construction (NC) and existing building (EB) Summarization of the prerequisites and credits for LEED NC Summarization of the prerequisites and credits for LEED EB EPA ENERGY STAR Program and Portfolio Manager ASHRAE Green Guide Benefits to the community, owners, and occupants
ENERGY ACCOUNTING IN BUILDINGS AND FACILITIES	MANAGEMENT	LIFE CYCLE COSTING
 Energy use index, energy cost index Where energy is used in facilities Lighting and HVAC energy use ENERGY RATE STRUCTURES	 Peak load reduction Power factor improvement Energy management control systems Load management Harmonics and other power quality issues 	 Concept of life cycle costing Purchase costs vs. operating costs Example analyses Government standards: FEMP FUEL SUPPLY AND FUEL SWITCHING
 Identifying types of energy used Electric rates, gas rates Oil, coal, and other rates Steam and hot water rates Factors in controlling fuel costs Utility incentive programs WASTE HEAT RECOVERY	 HVAC SYSTEM Types of HVAC systems and new technologies The vapor-compression cycle COPs and EERs Air conditioning loads Chiller improvement example 	 Alternative fuel choices Technology choices: HVAC systems, boilers, heaters, industrial processes Benefits of deregulation: electric and gas ALTERNATIVE FINANCING
 Objectives: design criteria Types and maintenance of heat exchangers Recuperators; economizers 	 Control, thermal storage, absorption systems 	 Different financing methods Attributes of each method After-tax cash flow analysis

Supporting Organizations: ASHRAE

energy (Hong Kong Branch) 能源學會(香港分會) **BSOMES**

BUILDING COMMISSIONING	BUILDING ENERGY USE AND PERFORMANCE	ECONOMIC ANALYSIS OF ALTERNATIVE INVESTMENTS
 What is commissioning-including new and existing buildings? The project team: roles and responsibilities New building commissioning: project phases Retro-commissioning, re-commissioning: project phase objectives Total and whole building commissioning Testing, adjusting, and balancing-verification, system by system Summary of applicable codes, organizations, guidelines: ASHRAE, USGBC LEED, SMACNA, BCA, AEE's CBCP Certification 	 Fuel types and costs Energy content of fuels Energy conversion factors Building envelope Natural gas purchasing Retail wheeling of electricity Major building energy use systems 	 Economic decision analysis Simple economic measures The time value of money Present and future values Cost and benefit analysis Rate of return Life cycle costing After tax cash flows
HONG KONG PRACTICE (BRIEF)	LIGHTING	CONTROLS AND ENERGY MANAGEMENT
 Mandatory Building Energy Codes (BEC) from the Hong Kong SAR Government Energy Audit Guidelines Most efficiency practice in Hong Kong Regulations and Limitations 	 Basics of lighting and current lighting technologies New lighting technologies Economic evaluation of example lighting improvements Lighting standards EPA Green Lights program T12, T8, T5 lamps Compact fluorescents HID, sulfur lamps 	 Night set back Optimum start/stop Enthalpy economizers Temperature resets PID controls, pneumatic controls Control characteristics BACNET and LONworks; TCP/IP; GUIs DDC
WASTE HEAT RECOVERY	COGENERATION (CHP)	MAINTENANCE
 Objectives: design criteria Types and maintenance of heat exchangers Recuperators; economizers 	 What is cogeneration Types of cogeneration cycles Examples of cost-effective use of cogeneration QF and deregulation 	 Maintenance management systems Monitoring for maintenance Infrared photography for maintenance Cost of: Air, steam, gas leaks; un-insulated surfaces
INSULATION	 Use of waste for fuel Renewable Energy Technologies 	
 Types of insulation Heat flow calculations Economic levels of insulation Passive thermal energy Where the action is? 		

• Where the action is?

Supporting Organizations: ASHRAE

Examination Requirement

All CEM candidates must satisfactorily complete a **four-hour** written open-book exam which contains 130 multiple choice questions, proctored by an approved exam administrator. Of the following seventeen (16) sections of the exam, candidates must complete at a minimum of eleven, including those indicated as **Required**. Only the first 11 sections that are marked (by the student) will be scored by the exam grading system.

- 1. Energy Accounting and Economics Required
- 2. Energy Audits and Instrumentation Required
- 3. Electrical Systems
- 4. HVAC Systems
- 5. Motors and Drives
- 6. Industrial Systems
- 7. Building Envelope
- 8. Cogeneration and CHP Systems

- 9. Energy Procurement
- 10. Building Automation and Control Systems
- 11. Green Buildings, LEED & Energy Star
- 12. Thermal Energy Storage Systems
- 13. Lighting
- 14. Boiler and Steam Systems
- 15. Maintenance & Commissioning
- 16. Alternative Financing

Eligibility

The prerequisites to qualify for the certification process have been designed to take into account the possible diversity of education and practical experience an individual may have. However each CEM candidate must meet one of the following criteria with the pass of exam:

- An engineering degree and/or R.P.E. and/or P.E., with at least *three (3)* years experience in energy engineering or energy management.
- A science or business degree, with at least *five (5)* years experience in energy engineering or energy management.
- A two-year **technical diploma or certificate**, with *eight* **(8)** years experience in energy engineering or energy management.
- **Ten (10)** years or more **verified experience** in energy engineering or energy management. (Note: Letters of reference and verification of employment must be submitted.) Evidence of years of experience must be submitted for CEM status application after passing the exam. Application forms will be distributed the students after the course/exam for the CEM certification.

Conditions

- 1. All candidates should firstly fax the form for registration and issue cheque for final confirmation.
- 2. Every effort will keep the course date unchanged. However, all candidates will be informed well in advance should there be any change of course date and other reasons.
- 3. The course contents may subject to change in accordance with the instructor(s).
- 4. The organizer reserves the right to cancel the course should there be insufficient candidates or other reasons. Course fee will then be refunded 100%.
- 5. All exam passed candidates will enjoy 1-year free AEE membership and a CEM certificates if he/she fulfils the above criteria.
- 6. Exam date may subject to change with prior notice to students.

Supporting Organizations:

Hona

< REPLY SLIP >

The Certified Energy Manager (CEM®) Program for Professional Certification

Course Code: CEM / 11 / HK (OL)

Registration

Early Bird Deadline: 23 March, 2013 Course Deadline: 14 April, 2013

(First come first serve, application may early close if class size reaches 30)

To register, please complete the reply slip and fax to (852) 2343 3132 or email to kinkiwan@ispl.com.hk and then mail it together with your crossed cheque made payable to:

"AEE Hong Kong Chapter"

c/o ISPL Consulting Limited Unit 2301, SUP Tower, 75 King's Road, North Point, Hong Kong Attention: **Ms. Kinki Wan** (Tel: +852 2797 9381), e-mail: kinkiwan@ispl.com.hk

Course Enquiry

Dr Leonard Chow, AEE Authorized Course Certification Administrator in Hong Kong. Tel: (852) 2566 3397, leonardchow@ispl.com.hk

_	Fee:		Fee
Course	A1:	Ordinary Applicants	HK \$8,400
	A2:	Early Bird	HK \$8,000
	A3:	Pairing	HK \$8,000
	A4:	Early Bird + Pairing	HK \$7,600
	B1:	Exam – Taking this course	HK \$ 2,600
Exam B2:		Re-sit exam - Full course taken previously	HK \$ 3,250
		Total A()+ B():	

Name (Same as HKID Card):	(Ir/Mr/Ms/Miss)
Company Name:	
Position Title:	
Company Address:	
Contact Phone: (Office)	(Mobile)
Fax #:	Email Address:
Institution:	Membership No:
Cheque no.:	Amount (HK\$):
Your Pairing Candidate's Name :	

Hona

hante

